• 36kV/38kV Indoor Vacuum Servo Motor Controlled Switching Circuit Breaker
36kV/38kV Indoor Vacuum Servo Motor Controlled Switching Circuit Breaker
discuss personally
Model
VD4-CS-38-1250
VD4-CS-36-1250
Basic info
Brand ABB
Model NO. 36kV/38kV Indoor Vacuum Servo Motor Controlled Switching Circuit Breaker
Rated voltage 38kV
Rated normal current 1250A
Rated frequency 50/60Hz
Series VD4-CS
Product Detail

Description:

VD4-CS is the unique solution based on new vacuum interrupter technology and an innovative actuation systems up to 38kV, 1250A, 31.5kA and with superior noise-free performances, to support your business needs in reactive power compensation.Noise-free power quality by safe and reliable switching and protection of capacitor banks.

Key benefits:

  • Inrush elimination thanks to high accuracy in controlled switching technology.
  • Up to 5-times higher performance than the market standard with 10,000 maintenance-, inrush- and restrike-free operations.
  • Enables elimination of inrush limiting reactors and resistances, leading to significant cost and space savings.
  • Cost saving by as much as 20%, using same ratings, same interfaces of existing MV substation thanks to optimized footprint equivalent to standard distribution breakers.
  • Reduced total cost of capacitor bank operation due to elimination of downtime for breaker overhaul and a lifespan 5 times the market standard, with predictive health indication.
  • Fast and reliable support thanks to ABB’s global footprint.
  • Assets optimization having both circuit-breaker and capacitive switching devices in one single solution.
  • Enables increased lifespan of capacitors by more than 10% in e.g. 3 years.

Key features:

  • Embedded advanced diagnostics.
  • Up to 38 kV, 1250A, 31.5 kA.
  • 10,000 maintenance-free and noise-free operations.

The CB comprises of:

  • Three poles in epoxy resin containing the vacuum interrupter.
  • Three brushless servomotors, one per phase with double encoder.
  • Three electronic controllers, one per phase, communicating hierarchically with each otherand with the first unit controls the entire system.
  • An electronic supply unit.
  • A capacitor for storing the energy required to operate the CB in the absence of auxiliary supply.
  • Three sensors and three mechanical position indicators.

Technical Characteristics:

Dimension drawing:

Know your supplier
ABB
As an authorized distributor of ABB products, we take great pride in our partnership.
Main Categories
High Voltage Electrical Apparatus/Low Voltage Electrical Apparatus
Business Type
Sales
Highest Annual Export (USD)
$580000000
Professional Experience
11 years
Workplace
20000m²
占位
占位
FAQ
Q: What inspections should be performed after a short-circuit fault in a vacuum circuit breaker?
A:
Check contact erosion: Minor erosion is acceptable (cumulative wear ≤3mm), but replace the vacuum interrupter if damage is severe. Test switching time and synchronization: Ensure values meet specifications to prevent operational issues caused by mechanism changes. Clean arc byproducts: Remove debris from the interrupter surface and inspect insulation components for impact damage or cracks.
Q: What are the differences between indoor vacuum circuit breakers and SF₆ circuit breakers?
A:
Arc-quenching medium: Vacuum circuit breakers use vacuum for arc quenching (environmentally friendly, no greenhouse gases), while SF₆ circuit breakers use SF₆ gas (requiring attention to gas leakage and environmental treatment). Volume and maintenance: Vacuum circuit breakers are smaller in size and have a longer maintenance cycle (the maintenance-free cycle can reach 10 years); SF₆ circuit breakers require regular detection of gas pressure.
Related Products
Related Knowledges
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
I. Introduction to Cable Grounding Loop CurrentCables rated 110 kV and above use a single-core structure. The alternating magnetic field generated by the operating current induces a voltage on the metallic sheath. If the sheath forms a closed circuit through the earth, a grounding loop current will flow on the metallic sheath. Excessive grounding loop current (loop current exceeding 50 A, more than 20% of the load current, or a ratio of maximum-to-minimum phase current greater than 3) not only a
Felix Spark
09/03/2025
Considerations and Recommendations for Flame-Retardant Selection of High-Voltage Cables
Considerations and Recommendations for Flame-Retardant Selection of High-Voltage Cables
1.Flame-Retardant Cable Classification StandardsThe flame-retardant standard system is divided into two main categories. The first category follows the "Classification of Burning Behavior for Electric and Optical Fiber Cables" GB 31247. Cables complying with this standard system are widely used in densely populated areas such as high-speed railways and subways. This standard imposes strict requirements on parameters such as smoke density, heat release, and total smoke production, and cables typi
James
09/03/2025
Repair of high-voltage cable metallic sheaths
Repair of high-voltage cable metallic sheaths
I. Functions of Metallic Sheaths and Necessity of RepairThe metallic sheath of high-voltage cables is a metal shielding structure laid outside the insulation layer, including types such as lead sheaths, aluminum sheaths, and steel wire armor. Its core functions include mechanical protection (resisting external impact and compression), electrochemical corrosion protection (isolating moisture and soil pollutants), electromagnetic shielding (reducing electromagnetic interference to the environment)
Felix Spark
09/03/2025
What factors need to be considered when designing a transformer?
What factors need to be considered when designing a transformer?
Transformer design is a complex process that requires consideration of multiple factors to ensure safe and efficient operation. In addition, compliance with international and local regulations is essential to guarantee that transformers meet safety and performance standards. Below are key factors to consider in transformer design and the relevant regulations to follow:Transformer Design Factors: Voltage and Frequency: Determine the input and output voltage levels and the operating frequency. The
Vziman
09/02/2025
What failure modes are possible in a transformer? How to identify and fix these failures?
What failure modes are possible in a transformer? How to identify and fix these failures?
Transformers are critical components in power systems, and various failure modes can affect their operation. Timely identification and resolution of these failure modes are essential to prevent costly downtime and ensure system reliability. Below are some common transformer failure modes, along with methods to identify and address them: Insulation FailureIdentification: Insulation failure leads to decreased insulation resistance, which can be detected through insulation resistance testing (megge
Edwiin
09/02/2025
A hybrid DC circuit breaker
A hybrid DC circuit breaker
Most DC molded-case circuit breakers use natural air arc extinction, and there are typically two arc extinguishing methods: one is conventional opening and closing, where the contacts axially stretch the arc, while the conductive circuit generates a magnetic field that bends and elongates the arc, pulling it lengthwise perpendicular to the arc axis. This not only increases the arc length but also induces lateral motion, enabling air cooling to achieve arc extinction.The other method involves the
Echo
09/02/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!